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ERRATUM

NACA TN 1572

STABILITY DERIVATIVES OF TRIANGULAR WINGS AT
SUPERSONIC SPEEDS
By Herbert S. Ribner and Frank S. Malvestuto, Jr.

May 1948

Page T7: The important derivatives CL& and Cm& are obtalned

incorrectly. The corrected values for these derivatives should read
as follows:

or. - _TA E''(BC) — MPH(BC) (4a)

_ xa B''(BC) — MPH(BC)
T 16 M2 — 1

Crmg, (5a)

The same correction should be made for these derivatives in table I
in the column "Principal body axes." 1In the column "Stability axes"
of table I the corrected expressions are

_ A E''(BC) — M2H(BC)

CL&,= 2 M2 — 1

Xcg)E' '(BC) — M2H(BC)

A
Cpe = 211 + 8
Ta 16< c M2 — 1

The error in the derivation consists in the assumption, carried
over from reference 1, that the surface potential, equation (3), is
not altered by a small normal acceleration. This assumption is true
for the narrow triangles treated in reference 1 but faills for the
general triangles treated 1n the present paper. The assumption is

equivalent to the neglect of the time dependency terms %% ¢xt
a

and 55 ¢tt (where t represents time and & is the speed of sound)
&

in the linearized partial differential equation for unsteady motions:
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2 2
B¢H-¢yy_¢zz+a—g'¢xt+%]'-§¢tt=o (a)
which leaves only the steady—state (Prandtl-Glauert) equation

Bx = By = By = O (v)

The correct potential to replace equation (3) must satisfy both
equation (a) and the boundary condition on the wing

<§g>z=o = —aVt (c)

In an unpublished paper, Mr. Clifford S. Gardner has, in effect, shown
that a suitable solution is

e e

M2 M2x
=‘BE‘“<'@>X (@

where Vv 1s the steady—state potential corresponding to a unit
pitching velocity about the y—axis and X 1s the steady—state
potential corresponding to unit angle of attack. Both  and X
satisfy equations of the form (b). That equation (&) is a solution
can be verified by direct substitution into equations (a) and (c).
Thus, Gardner has shown that the time—dependent potential for an angle
of attack &t may be compounded of two time—free, or steady—state,
potentials, one for a constant angle of attack and the other for

steady pitching.

The 1lift distribution at time t+ = O for the angle of attack at
is obtained from the potential by

OP

2p(V§2‘5X + ¢t>

2 2 ‘
o[ ME . o MExoy o X
QOVG(BE Yy X 2‘>

i

v82 X vB
- &), - X)) - op (o)
B2l q=1 v a=1 :
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where

(&P) =1 11ft distribution for unit pitching velocity
(aP) 1 1lift distribution for unit angle of attack

AP¥ value of AP per unit & used in deriving the

incorrect equations (4) and (5)

Integration of equation (c) over the plan form to obtaln the 1lift and
moment and reduction to coefficient form ylelds

_ M2 M2 ¢ *
Cry = 55 Cry * 2 35 Omy — g(ch) (£)

2 oM AP *
g, = 53 Ong B2552 <2 ) o - 2(Cmd> (&)
pl&n a=1

form

where the * deslgnates the incorrect values in equations (4) and (5)
respectively, and the y—axis 1s taken through the center of gravity.
Values of Cy, , Cmu’ and C, , may be obtained from table I

and (Cla>* and (Cma>*’ from equations (4) and (5). The

quantity <1AP > 1s obtained by setting o =1 and a = c(% ¢ + x)
o2

a=1
in equation (1). Substitution and integration then yields the
corrected values for Cr. and Cp, (equations (La) and (5a)) as set

forth at the beginning of this erratum.



NATTONAL ADVISORY COMMITTEE FCR AERONAUTICS

TECHNICAL NOTE NO. 1572

STABILITY DERIVATIVES OF TRIANGUIAR WINGS AT
SUPERSONIC SPEEDS

By Herbert S. Ribner and Frank S. Malvestuto, Jr.
SUMMARY

The analysis of the stability derivatives of low—aspect—ratio
trianguler wings st subsonic and supersonic speeds, given in NACA TN
No. 1423, 18 extended to apply to triangular wings having large vertex
angles end traveling at supersonic speeds. The 1ift, rolling moment
due to sideelip, end damping in roll and pitch for this more genersl
cese have been treated elsewhere on the basis of the theory of small
disturbances. The surface potentiels for angle of attack and rolling
taken therefrom are used to obtain the 1ift due to downwerd acceleration,
the several slde~force and yawing-moment derivetlves that depend on
leading-edge suction, and a tentative value for the rolling moment due
to yawing. All the known stebllity derivatives of the triangular wing
at supersonic speeds, regardless of source, are summarized for convenlence
and precented with respect to both body axes and stabllity axes. The
results are limited to Mach numbers for which the triangulsr wing is
contained within the Mach cone from its vertex. The spenwise veriation
of Mech number in the case of yawling is neglected, although the effect
must be of importance.

INTRODUCTION

An earlier investigation (reference 1) has provided theoretical
stability derivetives of low-uspect—ratio wings of triangular plan form
at subsonic end supersonic speeds. The restriction to low aspect ratio
was & consequence of the limitetlions of the theory. Several Investigators
have gince obtalned pressure disgtributlons for angle of attack, rolling,
pitching, and sideslip et supersonic speeds (references 2 to 6 and
unpublished apslyses), without restriction to low espect ratio. These
derivations have employed verlents of the lineer theory of supersonic
flcow end have, in fect, constltuted importent steps in the development
of the theory.

If the rotations are teken about the vertex, the pressure distribu—
tion for esch motion in the more genersl case is found to have the same
shape as the corresponding low-aspect—ratio epproximation, so long as
the trisngular wing 1s contzined within the Mach cone from the vertex.
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The magnitudes differ by factorg which are functions solely of the ratio
of the tangent of the semivertex angle of the triangle to the tangent of
the Mach angle., The same similarity exists between the distributions of
surface potential., It is thus relatively simple to extend most of the
derivations of reference 1 to remove the restriction to low aspect ratio
for supersonic speeds. Such an extension is made in the present paper.

The lift—curve slope, the damping in roll and pitch, and (in effect)
the rolling moment due to sideslip have been evalusted in references 2
to 6, so that the principal contributions of the present paper are the
gseveral side—force and yawlng-moment derivatives and a tentative value
of the rolling moment due to yawing. All the known stability derivatives
of the triangular wing at supersonic speeds, regardless of source, are
collected herein for convenlence and presented with respect to both body
axes and stabllity axes. Wings with dihedral are not treated (although
they were included in reference 1) and the results are limited to Mach
numbers for which the wing 1s contained within the Mach cone from its
vertex,

SYMBOLS

X,¥,2 rectangular coordinates (fig. 1)

u,v,w incremental flight velocities along x—, y—, and z-axes,
respectively, figure 2; induced flow velocitles along
x-, y—, and z-axes of figure 1, respectlvely

P,q,Tr angular velocitles about x—, y-—, and z-aexes, respectively,
figure 2

v flight speed

M stream Mach number (V/Speed of sound)

M? component Mach number normal to wing leading edge .

N

B cotangent of Mach angle (Vﬁﬁ?ffi)

a angle of attack (Flight w/V)

B engle of sideslip (Flight v/V)

€ semivertex angle of triangle

B Mach angle (E:ot""l \/M2 - %)




NACA TN No. 1572

AP locel pressure difference between lower and upper surfaces of

airfoil, positive in sense of a 1lift

p density of ailr
a semiwlidth of triangle at distance x from vertex
b span (base of triangle)
c root chord (height of triangle)
b/2
c mean aerodynamic chord = -Se- f (Local chord)2 dy = §-c
0
da A D
C dge sl &a_2_4a,
o saope (3-82-4-5)
A agpect ratilo (izl)-)
S area of triangle (—Jefbca
¢ velocity potential
= -1 ¥
n = cos &
x = \/1 - B2
E*(BC) complete elliptic integral of the second kind with
z ,/ 2
modulus k; f 2 \J1l - k251n z dz
0
F*(BC) complete elliptic integral of the first kind with

X dz
modulus k; fa
0 \/l-—kzsinez
1

E*(BC)

E"(BC) =

1 - B2

G(BC)
(1 - 2B2C2)E*(BC) + B2C2F(BC)

H(BC) = 3G(BC) — 2E"(BC)

i}

)
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o(1 — B2C?)
(2 — B2C2)E*(BC) — B2C2Ft(BC)

I(BC)

J(BC) = E"(BC)I(BC)\/1 — BZc?
K constant defined in equation (16) .
N yewing moment
Y lateral force
f suction force per unit length of edge
Lift
c 1ift coefficlent
- X s
2 p
c pitching-moment coefficient tCh
" - V2st
=) C
2
Roll moment
Cz rolling-moment coefficient olling mome
1

= ¢V2Sb

Ch yewing-moment coefficlent
L VESb

CY lateral—force coefficient

1 pVES

2
c, profile—drag coefficient Pr°i1192drag

0 = oV
> PS5

N induced surface veloclty normsl to wing leedling edge
8 perpendicular distance of point (x,y) from wing leading edge
xcg distance of center of gravity forward of %c
Subscripts:
R right edge
L  left edge
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Whenever «, a, q, P, B, and r are used as subscripts, a
nondimensional derivative 1s Indicated and this derivative is the slope

through zero. For example,

o ={_&m c - a:m‘ c _ acZ
T ac g qc IP b
). a ®

| a->o | \eV/}g0 &/ | p—so

c. = ' c, = %

= 2 L =
s |9 g0 r a(EE)

— VJ r-»o0

A dot above a symbol denotes differentiation with respect to time.

All angles are measured in radians.

ANALYSTIS

SCOPE

The stability derivatives of triangular wings at supersonic speed
that have been treated theoretically herein or elsewhere are listed in
table I, together with the expressions that have been found for them.
All the derivations make use of body axes. The derivations that follow
glve the values wlth reference to the pr&ncip body axes of figure 2
with origin at the aerodynamic center ’(30, O?é). Conversion has been

made to the system of stabil%ty axes shown In figure 3 with origin a
distance Xog ahead of the é—c point. Table I comprises parallel columns

which present formulas relative to both systems. The expressions are
limited to Mach numbers for which the triangle is contained within the
Mach cone from its vertex.

DERIVATIVES CLa’ CL&’ and Cm&

The pressure distribution on a thin delta wing at an angle of attack
in a supersonic strezm has been obtained in references 2 to L4 by the
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linearized theory without regtriction on the vertex angle of the triangle.
The approximation originally given for the siender (low-aspect—ratio)
triangle (reference 7) and used as the basis for reference 1 is found to
apply to the general case upon division by a constant (an elliptic integral)
that depends on the ratio of the semivertex angle to the Mach angle. That

is,

AP _ haCa (1)
1 g2 gt ,’2_ 2
5 oV E'(BC) \|a ¥y

where EY(BC) is the complete elliptic integral of the second kind with

modulus
\/1—3202
L

Thus the lift-—curve slope for the more general case is the value given by
references 7 and 1 divided by E'(BC):

~
il

A
0y = ———
@  2Et(BC)

g AE"(BC) (2)

The surface potential given in equation (3) of reference 1 is likewise
extended to include nonslender triangles at supersonic gpeeds upon division
by EYBC). The revised potential is

_ + Voa sin
(B)y, o - £ 122 2ing
E*(BC)
2
s Vo a8 - y2 (3)
E*(BC)
The elliptic integral E'(BC) depends only on the parameter BC = %gg—i

(ratio of the tazngent  of the semivertex angle of the delta wing to the
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tangent of the Mach angle) and 1s therefore a constant for a given wing
et a glven speed. The derivations in reference 1 for CL and Cm&: ,

a
which are based on the potential @, thus merely acquire a factor

" (BC) - 1 .

B (BC)
' ¢, = X gn(nc) (1)
Lg 2
= XA pn
cm&- = £"(sc) (5)

DERIVA!IT.'IVES Cmq, CLq, and Clp

The derivatives Cmq, C » and CZ are derlved in reference 5.
q P
With respect to the axes of figure 2

: Cay = - .%A. G(BC) (6)
y ch = 5"-‘-‘- H(ﬁc) (7
1y = .’3‘_2. 1(BC) (8)

where
6(50) = L (%)

(1 - 2B2c2)E*(BC) + B2C2F*(BC)

H(BC) = 3G(BC) - 2E"(BC) (10)

I(BC) = 201 - 2%°) (11)
(2 - B2C2)E*(BC) — B2C2F*(BC)
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and F*(BC) and E*(BC) are the complete elliptic integrals of the first
and second kinds, respectively, with modulus k = \/1 — B2C2,

DERIVATIVE Cl
B

The pressure distribution over a thin delta wing in yaw (sideslip) at
an angle of attack at supersonic speed has been obtained in reference 6
and unpublished work. If the angle of yaw is assumed to be small ZB <k:§>,

the rolling-moment coefficient can be expressed in the approximate form

~ o 2B o
C, 3 E"(BC)

Thus, the derivative with respect to B 1s

c

= - 3 E"(BC) (12)

B

An alternative derivation based on the surface potential, equation (3),
for the unyawed wing will be glven because the method provides the starting

polnt for a derivetion of Czr’ Cnr’ and CY}'

The potential for the dlsturbance velocity may be expressed relative
to axes alined with the stream (wind axes) or with respect to axes that
yaw with the body (body exes). For small angles of yaw (B << é), the

linearized equation for the potential hes the same form relative to either
system of axes. The potential is determined by the normal velocity of
polnts of the surface and by the orientation of the surface; for
negligible thickness, this normal velocity 1s Just oV for all angles

of yaw. The potential expressed relative to wind axes thus varies as

the wing yaws relative to these axes. The potentlal expressed relative

to body axes l1s constant for small yaw because the orlentation of the wing
relative to the axes does not change.

For wind axes, Bernoulli's law has the form

AP=2pV%
ox

and the change in the pressure distribution with yaw results from the change
in the potential function with yaw. For body axes with small yaw,
Bernoullits law has the approximate form
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. AP:QpV-a%—B%% o (13)

and the change in pressure distribution with yaw results from the
term -B gg since @ does not change. '

In reference 1 in the section entitled "DERIVATIVE c, ," the
B
derivation employs body axes and equation (13) of the present paper.
The surface potential used (equation (3) of reference 1) 1is the
approximation for narrow vertex angle. Equation (3) herein for a
general vertex angle may be used instead. Equation (3) herein differs

only in the factor 1/E¥(BC), whence the earlier expression for c,
' B

(equation (19), reference l,with T = 0°) acquires this factor to agree
with equation (12).

DERIVATIVE C
l r

- The foregoing discussion of the triangular wing in yaw (sideslip)
may be extended to provide a preliminary treatment of the case of a
small angular velocity of yaw r. The corresponding extension for

- narrow vertex angle ls made in reference 1. The treatment is general-—
ized to an arbltrary vertex angle for supersonic speeds,as before, by
using equation (3) herein for the surface potential., Two changes then
appear in the pressure equation, equation (20), of reference 1. The
right-hand side isodivided by E'(BC), and the term aC = xC2 must be
retained, since C~ 1s no longer small compared with unity (C = tangent
of semivertex angle). With these changes, the derivation leads to

1 A
c, = — + — |E"(BC 1k
L. e (9A ¥ 16> (50) : (%)

In the derivation of equation (14), the spanwise variation in local
Mach number caused by yawing 1s not taken into account although the
variation in forward speed is taken into account. The surface potential
that is used, equation (3), satisfies the linearized equation for a flow
of uniform Mach number. This potential is inadequate to describe the
compressibllity effects assoclated with a spanwise variation of Mach
number.

Thus, consider a high-espect-ratio rectanguler wing with tips cut
off along the Mach lines. In straight flight the Ackeret theory can be
applied. The pressure difference is given by
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2 2 :
AP = o oM~ (Speed of sound) (15)

Me —1

In yawing flight the forward velocity varies linearly along the span. If
the rate of yaw lg made sufficlently low, the variation from wing tip to
wing tip can be made so small that the flow is still nearly two—dimensional
at any point. Thus the Ackeret theory ls still applicable if the local
Mach number 1is used at each spanwise station. ‘

The variation in pressure with local Mach number can be obtained from
equation (15). As the Mach number is increased, the pressure decreases
from infinity at M =1 to a minimm at M = 1.4 and then increases again.
Thus below Mach number 1.4 the faster moving sections of the yawing wing
have the lesser 1ift. This result is contrary to subsonic behavior and to
that which would be predicted if the spanwise variation of Mach number were
neglected, Thus the spanwise varlation of the compressibility effect causes
a reversal of the sign of the rolling moment due to yawing for rectangular
wings at Mach numbers between 1 and 1.4, and at M = 1.4 the moment is
zero. (This result refers to yawing in a system of stability axes, fig. 3.
For body axes, fig. 2, the effect is similar but the reversal extends

to M= =)

A yawing triangular wing may be expected likewise to show an effect
of the spanwise variation in Mach number. If the triangle is contained
within the Mach cone from its vertex (the only case considered in this
paper), however, the effect should be very much less than for the rec—
tangular wing. In particuler, where the predicted effect for the rec—
tangular wing 1is a reversal of the sign of the rolling moment, the effect
for the triangular wing 1s expected to be merely a change in the magnitude.
A reversal in sign is not expected until the edges of the triangle protrude
from the Mach cone. Thils behavior is inferred from the fact that the
analyses of references 2 to 7 show many subsonic characteristics for
triangles within the Mach cone and a marked change in chsracteristics for
trlangles with side edges outside the Mach cone.

DERTIVATIVES C and C
Yb oy,

Extensive changes are necessary to generalize the treatment of Cy
P

and Cnp in reference 1 to arbitrary vertex angles for supersonic speeds;
therefore, the revised derivation is given in detail,
The derivatives CY and. CnP relative to body axes for a very

P
thin delta wing without dihedral arise entirely from suction on the wing
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side edges. Conslder a condition for which the induced velocity normsl
to the edge 1s of the form

-+ (16)

TN—_\/;

in the immediate nelghborhotd of the edge, where s 1ia the perpendicular
distance from the edge and X 18 a constant. Reference 3 points out
that for such a flow there 1s a suction force per unit length of edge,

£ = ﬂpK2§/1 - M2 | (17)

80 long as the delta wing does not protrude from the Mach cone from its
vertex. In equation (17), M' 1is the Mach number of the component of
the stream flow normal to the leading edge. The radical 1 ~M'2 ig
the Prandtl-Glauvert compressibility factor for the normal component of
flow. Equation (17) is limited to real values of the radical by the
conditlon expressed for the Mach cone.

For the delta wing in rolling motion the induced veloclity component -u
has been obtalned In reference 5 as

— pyC°
1 = -
2\’02 -(%)

Angle of attack gives the additional contribution (reference 2)

1(BC)

aYCe
u, = oon
' 2 _ (X
E (BC)\’C Zx)é

The total Induced velocity on the upper surface is thus the sum of Uy
and u, wlth the plus sign
02 v
L I(BC)
c2 (;) Et(BC) =2
X

Very near the side edge this velocity 1s approximabely
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3/2
u = ¢ : o+ X I(BC)

fo(c - %) E'(BC) 2

where the plus sign refers to the right edge and the minus sign to the left
edge.
If a similar calculatlon is made for v = -gg, it 1s found that as

the side edge is approached the resultant induced velocity \/ue + v2

becomes normal to the edge. Thus the normsl velocity near the edge is

_ \/l + c?

VH— C u

The perpendicular distance of point (x,y) from the side edge is

1+

Hid

Q

The resultant induced velocity very near the edge may therefore be
expressed approximately as

VN—

+ oV .L(BC)pC @ 2
E*(BC)

1/h 1/2
&)

which is of the form of equation (16). The suction force per unit length
of edge is fram equation (17) thus

2.0 2200 »
_ aV [1(z0)] pCx" |, I(BC)aVpCx 5 )
f 2pr EE'( Z"2+— M i_(iT(__)_ \/(14_0)(1_}4)

where the plus sign refers to the right edge and the minus sign refers to
the dge. The factor (1 + Cg)(l — M'2) can be reduced to
1-B , where B2 = M2 _ 1,

The lateral component of this suction force is -given by
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Cc
Y =f (fR - fL> ax
0
2.2
=_13(_ pC2c30,Vp I(Bc)\/l B<C

EY(BC)

The lateral-force coefficient is formed by division by % pVQS, and

the derivetive with respect to pb/2V 1s the stability derivative cYp.
It is

c. . 2ma I(BC) \1 - Bc? (18)

3 E*(BC)

The yawing moment of the leading-edge suction about the vertex of

the triangle 1s
[5G 2ie & aley )
- fo=f:) x\J1 + C dlxy1 + C
0 x=0 R L .
1(8C) \J1 - B%®
...% pCecuan(l + 02) (

E*(BC)

=
i

f

The moment about the reference point (%c ,0,0) 18

2
N N0+-§CY

N
_ T o2l + 902) I(BC) \J1 — B<C
36 E'(BC)

1

The yewing-moment coefficient is formed by division by -i— pVQS'b, and
the derivative with respect to pb/2V 1is the stebility derivative Cnp

It is
Coy = - m<}_ + 9..) I(50)\1 - 8% (19)

oA 16 E*(BC)
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DERIVATIVES CYﬁ, an, ch, and cerr

According to the discussion on CIB, a small angle of yaw or

sldeslip (B << L does not alter the surface potential expressed
M

reletlve to body axes. As & consequence the induced velocity distribu—
tion 1s unchanged. Thus the initlally symmetric distribution of leading-—
edge suctlon perslsts in sidesllip, and the derivatlves CY and Cn

are zero. B g

The surface potential reletive to body axes 1s likewise unaltered in
the first spproximation by a small angular veloclty of yaw. Accordingly,
ingofar as the pressure forces are concerned, the derlvatives CY and Cnr

r
ere zero, Subsonic experience, however, suggests an appreciable
Cnr-derivative (damping in yaw) from profile drag. This damping derivetive

has been eveluated In reference 1 as

Co_ = - CD({% + ;%2-) (20)

RESULTS AND DISCUSSION

The formulas that have been obtained for the varicus stability
derivatives are collected in teble I. Derivatlives obtained elsevhere
are included for completeness, and the source 1s indicated in each.
instence. Expressions are glven for two systems of coordinate axes.

In the first column are shown the derivatives reletive to the principal

body axes of figure 2 with origin a distance %c from the vertex of the
triangle. In the second columm are shown the results relative to
stability axes with origin a distance xcg ahead of the %c point.

The relationship between the two systems of axes is shown in figure 3.
Equations for transforming from body axes to stabillity axes are given
in reference 8; the shift in origin results in additional terms.

In the transformation of the present results from principal body
axes to stability axes terms of order AZ/16 and the more important
terms of order of are retained (see footnote, table 1), whereas in
reference 1 such terms are dropped as a consequence of the narrow vertex—

angle approximation.
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These results for an arbitrary vertex angle may be compared with the
asymptotic values for the case of vertex angle approaching zero given in
reference 1. The present results for principal axes are found to differ
from the asymptotic values (except for small terms in A2 and a?) only
in the acquisition of certeain factors which are functions of BC. Thus
the asymptotic values for CLa’ CL&, Cmq, CZB’ and CZr are multiplied

by E"(BC); C, 1s multiplied by G(BC); C; is multiplied by H(BC);
qQ

C is multiplied by I(BC); and C, and Cy are multiplied
P R

'p P
1(Bc) V1 — B2¢2

E'(BC)
tangent of the semivertex angle of the triangle to the tangent of the
Mach angle. BC approaches zero, therefore, as the vertex angle approaches
zero. The several functions E"(BC), . . ., J(BC) all approach unity
as BC approaches zero, and thus the derivatives obtained herein approach
the asymptotic values of reference 1 as the vertex angle goes to zero.

by

= J(BC). The parameter BC = %ﬁﬁ—i is the ratio of
i .

The variation of these stability derivatives with Mach number is
contained entirely in the factors E"(BC), . . ., J(BC). The five

factors are plotted against BC = %ﬁﬁ—ﬁ, the ratlo of the tangent of
5

the semivertex angle to the tangent of the Mach angle, in figure 4.

The derivatives apply to a wing of trlangular plan form and zero
thickness, The calculations are based on the assumption of potential
flow with small disturbances, sxcept in the case of the derivative Cnr’
in which skin friction is considered. The predicted infinite negative
pressure acting on an edge of zero thickness to yield a finite suction
force 1s, of course, a mathemetical idealization. (The local violation
of the assumption of emall disturbances is not serious.) Subsonic
experience indicates that with a suitably rounded edge a considerable
leading—edge suction force may be realized in practice, with the
thecretical value an ugpper limit. On the other hand, a sharp leading edge
is known to cause loss of the leading—edge suction. The requirements of
extreme thinness and a rounded lead.ng edge (that is, appreciable radius
of curvature) ere evidently in conflict. Thus the degree of applicability
of the yawing-moment and lateral-force derivatives to actual triangular
wings is uncertain. A further limitation on validity, already elaborated
on in the section on Clr’ exists alsc for the derivatives with respect

to yawing velocity. The analysis neglects the spanwise variation in
Mach number caused by the yawing (but not the spanwise variation in
velocity). The result is an error in the magnitude of the yawing
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derivatives that is expected to vary from zero for BC—>0 to an important
amount for BC—>1,

The potential @ satisfies the linearized equation of motion for
the steady state but not the more general linearized equation for unsteady
motion, This circumstance implies that the present expressions for the
stabllity derivatives are suitable only for steady motions, motions with
small accelerations, or sinuous motions of low frequency. This limitation
is accepted in 2ll stability work and may become serlous only in cases of
high-frequency oscillations such as flutter,

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., November 6, 1947
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TABLE T.— STABILITY DERIVATIVES OF THIN TRIANGULAR WINGS AT SUPERSONIC SPEEDS

Cy
r
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Reference 5

Reference 1
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L, A p(ae
’“’(9;; . 16) @)

1% F(BC)
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nA TA pn
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x
o Reference 5 LE:T6:1) ZA g(Be) + 1A —8 E"(BC)
q 2 2 T
x
Ca References 2 to & 0 - EQA % E"(BC)

—!‘-2 l+8x—°;\E"(BC)
T =/

2

C x
3_ G(BC) - "A -2 n(mc) ~ na —£- E"(30)
v

-~ B gr(BC
3 )

&) [on
I(BC) + 5\— 1+8 ——) E: (B¢) — J(Bcﬂ
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r-
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m|v<9—A o _E> E"(EC) + & I(BC) “CD0<6 9A2>
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1 A 8
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1

In the transformation from body axes terms of order
order u.e/A have been retalned, since they may be appreciable for small values of A.

o2 have been neglected in comparison with unity, but terms of

-



NACA TN No. 1572

19

Figure 1l.- Axes and notatlion used 1in analysis.

<~

Flgure 2.- Velocitles, forces, and moments relative to

principal axes with origln st %c.

Figure 5.~ Velocities, forces, and moments relative to
stabllity axes with origin at %c - Xege Principal

exes of flgure 2 dotted 1in for comparlson.

NACA
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Figure 4. _ Elliptic integral factors of the
stabi/ity derivat/ives That determine
their varriation with Mach rnumber.

(See Table T.)




